Total Roman domination subdivision number in graphs
نویسنده
چکیده مقاله:
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has no isolated vertices. The weight of a total Roman dominating function $f$ is the value $Sigma_{uin V(G)}f(u)$. The {em total Roman domination number} of $G$, $gamma_{tR}(G)$, is the minimum weight of a total Roman dominating function in $G$.The {em total Roman domination subdivision number} ${rmsd}_{gamma_{tR}}(G)$ of a graph $G$ is the minimum number of edges that must besubdivided (each edge in $G$ can be subdivided at most once) inorder to increase the total Roman domination number. In this paper,we initiate the study of total Roman domination subdivisionnumber in graphs and we present sharp bounds for this parameter.
منابع مشابه
Nonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
متن کاملTotal double Roman domination in graphs
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...
متن کاملSigned total Roman k-domination in directed graphs
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
متن کاملOn the total domination subdivision number in graphs
A set S ⊆ V of vertices in a graph G = (V,E) without isolated vertices is a total dominating set if every vertex of V is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in...
متن کاملSIGNED ROMAN DOMINATION NUMBER AND JOIN OF GRAPHS
In this paper we study the signed Roman dominationnumber of the join of graphs. Specially, we determine it for thejoin of cycles, wheels, fans and friendship graphs.
متن کاملroman game domination subdivision number of a graph
a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2
صفحات 157- 168
تاریخ انتشار 2020-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023